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Particle trajectories are fast oscillations on top
of slow motion of guiding centers
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Motivations

• Identifying regimes for quiescent propagation of intense beams over long
distances is of the great interest in accelerator research.

• In particular, the development of systematic theoretical approaches that
are able to treat self-consistently the applied oscillating force and the
nonlinear self-field force of the beam particles simultaneously has been a
major challenge of modern beam physics.

• To determine matched-beam quasi-equilibrium distribution functions one
needs to determine a dynamical invariant for the beam particles moving
in the combined applied and self-generated fields.

• Typically, it is advantageous to eliminate fast oscillations from formalism
and describe complex beam particle motion is in a new non-oscillating
coordinates.

• Standard Hamiltonian techniques are cumbersome due to use of mixed
oscillating and non-oscillating independent variables.
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Abstract

• New Hamiltonian averaging technique has been developed, which incor-
porated both the applied periodic focusing force and the self-field force
of the beam particles.

• Newly developed technique is specially designed to avoid use of oscillating
independent variables. The method is analogous to the Lie transform
methods in using only non-oscillating independent variables. At the same
time the new approach retains the advantages of simplicity of Hamiltonian
methods.

• Using the particle’s vacuum phase advance ε = σv/2π treated as a small
parameter, the perturbative series are constructed to transform away
the fast particle orbit oscillations and obtain the average Hamiltonian
accurate to order ε3.

• The average Hamiltonian is an approximate invariant of the original sys-
tem, and can be used to determine self-consistent beam quasi-equilibrium
solutions that are matched to the focusing channel.

• Making use of this new method equations determining the average self-
field potential for general boundary conditions has been obtained for the
first time by taking into account the average contribution of the charges
induced on the boundary.
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Vlasov-Poisson system of equations

• The transverse dynamics of the intense charged particle beam can be
described by the nonlinear Vlasov-Poisson system of equations for the
beam distribution function f(x, p, s) and the normalized self-field potential
Ψ(x, s).

• Here s = vbt is the longitudinal coordinate, and vb is the directed beam
velocity. The function f(x, p, s) satisfies the nonlinear Vlasov equation

df

ds
=
∂f

∂s
+

2∑
α=1

dxα

ds

∂f

∂xα
+

2∑
α=1

dpα

ds

∂f

∂pα
= 0,

• where the particle equations of motion are give by

dxα

ds
=

∂H

∂pα
,

dpα

ds
= −

∂H

∂xα
,

• The Hamiltonian H(x, p, s) describes the particle motion in a force field
that is the sum of a linear, externally applied, transverse focusing force
with components Fα

foc = −κ(s)ηαxα and the normalized self-field potential

Ψ(x, s) is calculated self-consistently using Poisson’s equation.

• κ(s) is the focusing field strength η1 = 1, η2 = −1.
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The Hamiltonian H for the particle motion

• It is convenient to introduce the re-normalized variables x̄ = x/a, s̄ =
s/S0, κ̄(s) = κ(s)/κ0, p̄ = p/(aκ0S0) and f̄ = (f/N)a4(κ0S0)2, where
S0 is the characteristic period of the applied focusing force, a is the
characteristic transverse beam dimension, and κ0 is the characteristic
value of the lattice function κ(s).

• After the normalization, the Hamiltonian becomes

H̄(x̄, p̄, s̄) = κ̄(s̄)
[ηαx̄αx̄α]

2
+ ε
{[p̄αp̄α]

2
+

∫
L(x̄, x̄′)f̄(x̄′, p̄′, s′)Dx̄′Dp̄′

}
,

where ε ≡ S2
0κ0 and

∫
dx̄dp̄f̄ = 1.

• We adopt the notation [xαxα] ≡
∑2

α=1 x
αxα and

∫
dx1dx2Z =

∫
DxZ.

• Green’s function L(x̄− x̄′) satisfies the equation[
∂

∂x̄α
∂

∂x̄α

]
L(x̄− x̄′) = −sbδ(x̄− x̄′).

Here, sb = 2K/(κ0S0)2a2 = (4πq2N/a2γ3
b )/(κ0S0vb)2 is a measure of the

beam space-charge intensity.

• For the beam confined by the external focusing force the maximum value
of (sb)max ∼ 1.
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Perturbative Hamiltonian Transformation
Method

• We search for a time-dependent canonical transformation of the form
(xα, pα, H, s)→ (Qα, Pα,K, s)

xα = xα(Q,P, s),
pα = pα(Q,P, s),

with time-independent transformed Hamiltonian K(Q,P ).

• For every canonical transformation there is a function S that satisfies the
differential relation

[pαdxα]−Hds = dS + [PαdQα]−Kds.

• Express S = U + p0(Q,P, s)α(x−Q)α, where U(Q,P, s) and p0(Q,P, s) are
functions of the new phase-space variables.[

(x−Q)α
∂pα0
∂P β

]
=

[
(p− p0)α

∂(x−Q)α

∂P β

]
−
∂U

∂P β
,

(p− P )β = −
[
(p− p0)α

∂(x−Q)α

∂Qβ

]
+

∂U

∂Qβ
+

[
(x−Q)α

∂pα0
∂Qβ

]
,

K −H = −(p− p0)α
∂(x−Q)α

∂s
+
∂U

∂s
+ (x−Q)α

∂pα0
∂s

.
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The distribution function in the new coordinates

• Particle conservation in the phase-space volume DxDp under the trans-
formation

F (Q,P, s) DQDP = f(x, p, s) DxDp.

• For a canonical transformation, the phase-space volume is conserved ac-
cording to DxDp = DQDP , and therefore F (P,Q, s) = f [x(Q,P, s), p(Q,P, s), s].

• The new distribution function satisfies the Vlasov equation dF/ds = 0.

• For a time-independent Hamiltonian, there exists a trivial solution to the
Vlasov equation, F = G[K(Q,P )] for arbitrary function G.

• The matched solution can be found from f(x, p, s) = G{KG[QG(x, p, s), PG(x, p, s)]}.

• For solutions of this form, the Hamiltonian becomes

H(x, p, s) =
κ(s)[ηαxαxα]

2
+ ε
{[pαpα]

2
+

+

∫
L[x, x(Q̄, P̄ , s)]G[K(Q̄, P̄ )]DQ̄DP̄

}
.
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Iterative procedure of finding the canonical
transformation in terms of the small parameter

ε ∼ σv/2π � 1

• Make an expansion

p = p0(Q,P, s) +
∑
n=1

εnpn(Q,P, s),

x = Q+
∑
n=1

εnxn(Q,P, s),

U = U0(Q,P, s) +
∑
n=1

εnUn(Q,P, s),

K = K0(Q,P ) +
∑
n=1

εnKn(Q,P ),

where pn, xn, Un and Kn (n = 0,2, ...) are functions to be determined by
the iterative procedure.

• We expand the function H according to

H(x, p, s) ≡ H[Q+
∑
n=1

εnxn, p0 +
∑
n=1

εnpn, s]

= H0(Q,P, s) +
∑
n=1

εnHn(Q,P, s).
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Iterative procedure up to second order in
ε ∼ σv/2π

• The average Hamiltonian K has the form K = ε(K1 + εK2 + ε2K3 + · · ·).
The ε in front of the bracket renormalizes the time scale, so that the
average dynamics occurs on the slow time-scale Q = Q(εs) and P =
P (εs).

• Therefore, to determine the trajectories x(s) and p(s) valid to second
order in ε, we need to determine the average Hamiltonian K valid up to
the third order in ε.
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Canonical transformation up to second order in
ε ∼ σv/2π

xα = Qα − εκ(2)ηαQα + ε2
{

2κ(3)ηαPα + (κκ(2))(2)Qα
}
,

and

pα =
{
Pα − κ(1)ηαQα

}
+ ε

{
κ(2)ηαPα + (κκ(2))(1)Qα

}
+

+ε2
{(

3 < (κ(2))2 > −2(κκ(3))(1) − (κκ(2))(2)
)
Pα

+
(
κ(3) < (κ(1))2 > −(κ(κκ(2))(2))(1)

)
ηαQα

}
+ ε

∂

∂Qα
Ψ(Q)(1).

• Here, < A >≡ (1/S)
∫ s0+S

s
ds̄A(s̄), and � A�≡ A− < A >. Here, we also

introduce the notation A(0) ≡� A� and

A(n) ≡�
∫
dsA(n−1) �, for n ≥ 1

• The time-independent Hamiltonian correct to the third order in ε is

K = ε
{[PαPα]

2

(
1 + 3ε2 < (κ(2))2 >

)
+

[QαQα]

2

(
< (κ(1))2 >

+ε2 < ((κκ(2))(1))2 >
)
+ < Ψ(Q) >

}
Ψ(Q) =

∫
DQ̄L(Qα(1 + εηακ(2)), Q̄α(1 + εηακ(2)))n(Q̄), n(Q) =

∫
DPF (Q,P ).



Approximate vs. Exact

• The approximate expression for the square of the vacuum phase advance
σ2
v valid up to forth order in small parameter ε, i.e.,

σ2
v = S2ε2

{
1 + 3ε2 < (κ(2))2 >

}{
< (κ(1))2 > +ε < κ(κ(2))2 >

+ε2 < ((κκ(2))(1))2 >
}
.

• Plots of the normalized quantities σv/σsf and σv/σav versus the vacuum
phase advance σv for periodic step-function lattice with filling factor δ =
1/2.
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Evaluation of self-field potential

• Expanding correct to second order in the small parameter ε, we obtain
the expression for the average potential

< Ψ(Q) > = (1 + ε2 < v2 >)φ0 + ε2 < v2 >
(
φ1 −

[
ηαQα ∂

∂Qα

]
φ2

+
1

2

[
ηαηβQαQβ ∂2

∂Qα∂Qβ

]
φ0

)
,

where v = κ(2) and the functions φ0(Q), φ1(Q) and φ2(Q) satisfy the
Poisson-type equations

∇2
⊥φ0 = −sbn(Q),

∇2
⊥φ1 = −sb

([
Qα ∂

∂Qα

]
+

1

2

[
ηαηβQαQβ ∂2

∂Qα∂Qβ

])
n(Q),

∇2
⊥φ2 = −sb

[
ηαQα ∂

∂Qα

]
n(Q),

• In cylindrical coordinates Q1 = r cos(θ), Q2 = r sin(θ)[
ηαQα ∂

∂Qα

]
= Q1 ∂

∂Q1
−Q2 ∂

∂Q2
= cos(2θ)r

∂

∂r
− sin(2θ)

∂

∂θ
.

The Heavy Ion Fusion Science Virtual National Laboratory



Boundary conditions for self-field potential

• Needs to specify some boundary surface in the coordinate space (Q1, Q2)
and certain boundary conditions on this boundary.

• It is convenient to designate this boundary surface to be a surface in
the coordinate space (Q1, Q2), where the function L(Q, Q̄) satisfies the
same boundary conditions as the function L(x, x̄) in the coordinate space
(x1, x2).

• In that case, the boundary conditions for φ0(Q), φ1(Q) and φ2(Q) in the
coordinate space (Q1, Q2) are the same as the boundary conditions for
the Green’s function L(Q, Q̄).

• Note that this boundary surface in the coordinate space (Q1, Q2) becomes
a surface that oscillates around the boundary surface in the coordinate
space (x1, x2).

• Because the two surfaces differ, the average potential Ψ̄(Q) in the coor-
dinate space (Q1, Q2) does not satisfy the same boundary conditions as
the un-averaged potential in the coordinate space (x1, x2).
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Equilibrium self-field potential

• In equilibrium

n(Q) =

∫
dPG(K) =

∫
dPG(Kkin +Kext + Φ0 + ε2 < v2 > Ψ̄1).

• For perfectly conducting cylindrical boundary of radius Rw,

Ψ̄1 = p(r) + cos(4θ)q(r),

where(
1

r

d

dr
r
d

dr
+ sbn

′
0(r)

)
p(r) = −sb

8

R4
w

∫ Rw

0
drr3n0(r),(

1

r

d

dr
r
d

dr
−

16

r2
+ sbn

′
0(r)

)
q(r) = −2sb

(
n0 +

4

r2

∫ r

0
dr̄r̄n0(r̄)−

12

r4

∫ r

0
dr̄r̄3n0(r̄)

)
,

• with boundary conditions

p(Rw) = −
2sb
R2
w

∫ Rw

0
drr3n0(r), q(Rw) = −sb

(
2

R2
w

∫ Rw

0
dr̄r̄3n0(r̄)−

1

2

∫ Rw

0
dr̄r̄n0(r̄)

)
.

• Here, n0(r) ≡
∫
dPG[Kkin+Kext+Φ0(r)] and n′0 ≡ ∂n0(r)/∂Φ0 with Φ0(r)

determined self-consistently through

1

r

d

dr
r
d

dr
Φ0 = −sbn0(r),



Thermal equilibrium distribution

• Zero-order thermal equilibrium average beam profile

n̄0 = n0(r)/n0(0) = exp

(
−
< (κ(1))2 > r2/2 + Φ0(r)

T̄

)
.

• Normalizing distance as ρ2 = r2sbn̄/T and potential as φ̄0 = Φ0/T , q̄ =
q/T .

• For thermal equilibrium distribution normalized quantities are function of
two parameters

ε ∼ (σv/2π)

and beam intensity

s̄ = sbn̄/(2 < (κ(1))2 >) = ω2
p/2ω2

sf < 1,

where ω2
p = 4πq2n0(0)/mb is the plasma density at the beam center and

ωsf = (σv/2π)(vb/S) is the average focusing frequency of the lattice.
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Maxwellian distribution averaged density profile

• Plots of density profiles n̄0(ρ) for different values of intensity parameter
s̄ = 0.1; 0.3; 0.5; 0.8; 0.9; 0.99; 0.999.
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• For s̄� 1

n̄0(ρ) ≈
(

1 +
ρ2

4s̄

)s̄
exp

(
−
ρ2

4s̄

)
.

• For ∆ = 1/s̄− 1� 1

n̄0(ρ) ≈
[
1 + 1

2
∆ + 1

24
∆2
]2[

1 + 1
2
∆I0(ρ) + 1

24
[∆I0(ρ)]2

]2 ,
where I0(ρ) is zero order modified Bessel function.



Corrections to density profile for Maxwellian
distribution

• Normalized equilibrium density profile, accurate to second order in ε, can
be expressed as

n̄(ρ, θ) = n̄0(ρ)[1− ε2 < (κ(2))2 > cos(4θ)q̄(ρ)].

• Define RMS radius as

R2(θ) =

∫
ρ3n̄(ρ, θ)dρ∫
ρn̄(ρ, θ)dρ

, R2
0 =

∫
ρ3n̄0(ρ)dρ∫
ρn̄0(ρ)dρ

.

• Relative change in RMS radius as δR(θ)/R0 = R(θ)/R0 − 1 can be ex-
pressed as

δR(θ)

R0
= −ε2 < v2 > cos(4θ)A(s̄),

where A(s̄) is given by

A(s̄) =
1

2

[∫∞
0 ρ3q̄(ρ)n̄0(ρ)dρ∫∞

0 ρ3n̄0(ρ)dρ
−
∫∞

0 ρq̄(ρ)n̄0(ρ)dρ∫∞
0 ρn̄0(ρ)dρ

]
.
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Corrections to density profile, cont’d

• Plots of density profile correction q̄(ρ)n̄0(ρ) for different values of intensity
parameter s̄ = 0.3; 0.6; 0.9; 0.99; 0.999.
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• Plots of function A(s̄), (a) linear s-scale and (b) logarithmic s-scale.
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• Here ρ1/2(s̄) ' ln
[
C
∆

√
2π C

∆

]
is the beam edge radius n̄0(ρ1/2) = 1/2 and

C ≈ 0.78.



Specific example of the beam inside of perfectly
conducting cylindrical boundary

• Kapchinskij-Vladimirskij distribution G(K) = (n̄0/2π)δ(K −K0) with

n0(r) =
{
n̄0, r < a,
0, a < r ≤ Rw.

• Beam radius rb becomes weakly dependent on the angle θ according to

rb(θ) = a

1 + ε2 < v2 >
s̄

(1− s̄)

 (a/Rw)4

1− 2s̄
1−s̄ ln a

Rw

+
cos(4θ)

2

(a/Rw)8

1 + s̄
4(1−s̄)

(
1−

(
a
Rw

)8
)

 .

• For Rw → ∞, Ψ̄1 = 0, and the total self-field potential inside the beam
is given by zero order potential Φ0, which is what one would expect
for a Kapchinskij-Vladimirskij distribution in free space (Rw →∞) which
generates the constant beam density and linear self-field forces.

• For finite Rw, the image charge oscillations produce additional contribu-
tions to the average self-field potential inside the beam, which lead to
the octopole correction to the average beam radius.
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Simulation studies

• The simulations results for a sinusoidal lattice κ(s) = κ0 sin(2πs/S)

• Beam intensity s̄b = 0.5, wall radius Rw = 5R0, and σv = 250 which
corresponds to ε = 0.07.

• Fourier spectrum ∼ exp(imθ) of the averaged over time relative RMS
radius change < δR(θ)/R0 > as a function of azimuthal mode number m.
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• Time history of m = 4 component of δR(θ, s)/R0.

The Heavy Ion Fusion Science Virtual National Laboratory



Results and Conclusions

• New Hamiltonian averaging technique has been developed, which incor-
porated both the applied periodic focusing force and the self-field force
of the beam particles.

• Using the particle’s vacuum phase advance ε = σv/2π treated as a small
parameter, the perturbative series are constructed to transform away
the fast particle orbit oscillations and obtain the average Hamiltonian
accurate to order ε3.

• The higher order corrections allow us to extend the average formulaic
results to larger vacuum phase advances approaching σv ∼ 900 with ac-
curacies to within several percent.

• The equations determining the average self-field potential have been de-
rived for general boundary conditions by taking into account the average
contribution of the charges induced on the boundary.

• The average equation can be used to find an approximate invariant of
the original system, and can be used to determine self-consistent beam
quasi-equilibrium solutions that are matched to the focusing channel.

• The time-dependent formulation can be used to describe collective beam
dynamics which is slow in the transformed coordinates (slow compared
to the period of of the lattice).
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Results and Conclusions, cont’d

• The corrections to the self-field are small, and therefore the ”smooth-
focusing” approximation for the self-field potential can be a good ap-
proximation even for moderate values of the vacuum phase advance.

• For example, for vacuum phase advance of σv = 900 the correction to the
RMS radius of the beam described by a thermal equilibrium distribution
arising from the corrections to the average self-field potential is of order
0.5%.

• Nonetheless, note that because the average self-field potential acquires
an octupole component, the average motion of some beam particles
becomes non-integrable and the trajectories become chaotic.

• This chaotic behavior of some of the beam particles may change the
nature of the Landau damping (or growth) of collective excitations sup-
ported by the beam.

• Also, due to the presence of the extra non-axisymmetric terms in the
equations for the self-field potential, the stability properties of different
beam quasi-equilibria can change significantly.
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